Rapid Control Selection through Hill-Climbing Methods

نویسندگان

  • Krispin A. Davies
  • Alejandro Ramirez-Serrano
  • Graeme N. Wilson
  • Mahmoud Mustafa
چکیده

Consider the problem of control selection in complex dynamical and environmental scenarios where model predictive control (MPC) proves particularly effective. As the performance of MPC is highly dependent on the efficiency of its incorporated search algorithm, this work examined hill climbing as an alternative to traditional systematic or random search algorithms. The relative performance of a candidate hill climbing algorithm was compared to representative systematic and random algorithms in a set of systematic tests and in a real-world control scenario. These tests indicated that hill climbing can provide significantly improved search efficiency when the control space has a large number of dimensions or divisions along each dimension. Furthermore, this demonstrated that there was little increase in search times associated with a significant increase in the number of control configurations considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sign Language Classification Using Search Algorithms

We concentrate on the problem of feature selection on sign language classification. The goal is to maximize the classification accuracy using a proper subset of features out of totally 22 given features. In this work, we employ two search methods: Hill Climbing approach and Random Walk approach, to select the features. We claim that both algorithms are easy-implemented but reasonable and effici...

متن کامل

Comparison of Selection Methods for Evolutionary Optimization

Selection is an essential component of evolutionary algorithms, playing an important role especially in solving hard optimization problems. Most previous studies on selection have focused on more or less ideal properties based on asymptotic analysis. In this paper, we address the selection problem from a more practical point of view by considering solution quality achievable within acceptable t...

متن کامل

Selection of the Most Important Components from Multispectral Images for Detection of Tumor Tissue

The problem raised in this article is the selection of the most important components from multispectral images for the purpose of skin tumor tissue detection. It occured that 21 channel spectrum makes it possible to separate healthy and tumor regions almost perfectly. The disadvantage of this method is the duration of single picture acquisition because this process requires to keep the device v...

متن کامل

Nature Methods jModelTest 2 : more models , new heuristics and parallel computing

jModelTest 2: more models, new heuristics and parallel computing Diego Darriba, Guillermo L. Taboada, Ramón Doallo and David Posada Supplementary Table 1. New features in jModelTest 2 Supplementary Table 2. Model selection accuracy Supplementary Table 3. Mean square errors for model averaged estimates Supplementary Note 1. Hill-climbing hierarchical clustering algorithm Supplementary Note 2. He...

متن کامل

Comparison of Genetic and Hill Climbing Algorithms to Improve an Artificial Neural Networks Model for Water Consumption Prediction

No unique method has been so far specified for determining the number of neurons in hidden layers of Multi-Layer Perceptron (MLP) neural networks used for prediction. The present research is intended to optimize the number of neurons using two meta-heuristic procedures namely genetic and hill climbing algorithms. The data used in the present research for prediction are consumption data of water...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012